In this work we present an application of two different models for the calculation of extraterrestrial solar radiation and main components of surface radiation balance under clear sky conditions. These models account for the effects of the morphology on solar radiation and potential evapotranspiration exploiting the slope and aspect of the considered surfaces. The solar radiation was evaluated with two algorithms (Allen et al., 2006 and Kumar et al., 1997) and is used in the Penman-Monteith equation to estimate the potential evapotranspiration. By comparing the maps and the profiles obtained with these two models we highlighted the main differences due to the structure of the two different algorithms considered. Results show that the two methods produces almost same results when applied at the yearly scale, while the algorithm by Allen et al. (2006) outperform the one proposed by Kumar et al. (1997) at the daily time scale. Results highlighted the role of morphology (slope and aspect) on the global solar radiation and evapotranspiration at the local scale.

How to cite: Pizzolla, T., A. Acampora, S. Manfreda, Effetti legati alla morfologia nella stima della Radiazione Solare globale e dell’Evapotraspirazione potenzialeL’Acqua, n.2, 45-53, 2012. [pdf]

By