Characterizing the spatial dynamics of soil moisture fields is a key issue in hydrology, offering an avenue to improve our understanding of complex land surface–atmosphere interactions. In this paper, the statistical structure of soil moisture patterns is examined using modelled soil moisture obtained from the North American Land Data Assimilation System (NLDAS) at 0.125° resolution. The study focuses on the vertically averaged soil moisture in the top 10 cm and 100 cm layers. The two variables display a weak dependence for lower values of surface soil moisture, with the strength of the relationship increasing with the water content of the top layer. In both cases, the variance of the soil moisture follows a power law decay as a function of the averaging area. The superficial layer shows a lower degree of spatial organization and higher temporal variability, which is reflected in rapid changes in time of the slope of the scaling functions of the soil moisture variance. Conversely, the soil moisture in the top 100 cm has lower variability in time and larger spatial correlation. The scaling of these patterns was found to be controlled by the changes in the soil water content. Results have implications for the downscaling of soil moisture to prevent model bias.

How to cite: Manfreda, S., M. McCabe, E.F. Wood, M. Fiorentino and I. Rodríguez-Iturbe, Spatial Patterns of Soil Moisture from Distributed ModelingAdvances in Water Resources, 30(10), 2145-2150, (doi: 10.1016/j.advwatres.2006.07.009), 2007. [pdf]

By

He is Full Professor of Hydrology and Hydraulic Constructions at the University of Naples Federico II. He is currently chair of the IAHS MOXXI working group. His research primarily centers on hydrological modeling and monitoring. Recognizing the challenges posed by the complexity and limitations of traditional hydrological observations, he actively explores advanced and alternative monitoring techniques, such as the utilization of Unmanned Aerial Systems (UAS) coupled with image processing.