The present paper introduces an analytical approach for the description of the soil water balance and runoff production within a schematic river basin. The model is based on a stochastic differential equation where the rainfall is interpreted as an additive noise in the soil water balance and is assumed uniform over the basin, the basin heterogeneity is characterized by a parabolic distribution of the soil water storage capacity and the runoff production occurs for saturation excess. The model allowed to derive the probability density function of the produced surface runoff highlighting the role played by climate and physical characteristics of a basin on runoff dynamics. Finally, the model have been tested over a humid basin of Southern Italy proposing also a strategy for the parameters estimation.

How to cite: Manfreda, S., Runoff Generation Dynamics within a Humid River BasinNatural Hazard and Earth System Sciences, 8, 1349-1357, (doi:10.5194/nhess-8-1349-2008), 2008. [pdf]

By

He is Full Professor of Hydrology and Hydraulic Constructions at the University of Naples Federico II. He is currently chair of the IAHS MOXXI working group. His research primarily centers on hydrological modeling and monitoring. Recognizing the challenges posed by the complexity and limitations of traditional hydrological observations, he actively explores advanced and alternative monitoring techniques, such as the utilization of Unmanned Aerial Systems (UAS) coupled with image processing.